

Иванов Владимир Сергеевич

РАЗРАБОТКА ОСТРОФОКУСНОГО РЕНТГЕНОВСКОГО ИСТОЧНИКА С БОЛЬШИМ СРОКОМ СЛУЖБЫ

Специальность 05.27.02 – «Вакуумная и плазменная электроника»

Автореферат диссертации на соискание ученой степени кандидата технических наук

Рязань 2014

Работа выполнена в ФГБОУ ВПО «Рязанский государственный радиотехнический университет» (РГРТУ).

Научный руководитель: **Трубицын Андрей Афанасьевич**, доктор физико-математических наук, профессор ФГБОУ ВПО «Рязанский государственный радиотехнический университет», г.Рязань

Официальные оппоненты: Кристя Владимир Иванович,

доктор физико-математических наук, профессор кафедры «Высшая математика» ФГБОУ ВПО «Калужский филиал Московского государственного технического университета им. Н. Э. Баумана г. Калуга

Бочков Виктор Дмитриевич,

кандидат технических наук, директор ООО «Импульсные технологии» г. Рязань

Ведущая организация:	ФГБОУ ВПО «Рязанский	
	государственный университет имени	
	С. А. Есенина» г. Рязань	

Защита диссертации состоится «24» декабря 2014 г. в 11 час. 00 мин. на заседании диссертационного совета Д 212.211.03 в ФГБОУ ВПО «Рязанский государственный радиотехнический университет» по адресу: 390005, г. Рязань, ул.Гагарина, 59/1.

С диссертацией можно ознакомиться в библиотеке ФГБОУ ВПО «Рязанский государственный радиотехнический университет» или на сайте <u>http://www.rsreu.ru</u>

Автореферат разослан «___» ноября 2014 г.

Ученый секретарь диссертационного совета д.ф.-м.н.

w М.В. Чиркин

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы

Сфера применения микрофокусной рентгенографии и рентгеноскопии расширяется со скоростью, превышающей все данные прогнозов.

Микрофокусная рентгенография как способ получения теневых картин просвечивания с помощью источников рентгеновского излучения обладает рядом преимуществ по сравнению с традиционными способами рентгеновских исследований:

• микрофокусные источники принципиально способны обеспечить высокую локальность исследований;

• при равных дозах в плоскости приемника микрофокусные аппараты обеспечивают более высокое качество изображения;

• микрофокусные источники позволяют получать увеличенные (в 5 - 10 раз) изображения.

Актуальность работы заключена в имеющейся потребности на предприятиях и в организациях самого различного профиля в системе микрофокусной рентгенографии для исследований

• новых материалов;

- упорядоченных структур;
- пленочных и тонкопленочных структур;
- механических дефектов технических устройств;
- биологических объектов, в том числе, на клеточном уровне;

• объектов медицины.

Рынок рентгеновского оборудования предлагает лишь ограниченный набор устройств, способных решать указанные задачи. Причем всем этим устройствам присущ целый ряд недостатков, главные из которых

• малая мощность излучения (менее 10 Вт);

• малый срок службы (порядка 1000 часов);

• резкий рост стоимости при незначительном улучшении потребительских параметров.

Для разрешения указанных проблем разрабатывается острофокусный рентгеновский источник с выделяемой мощностью на аноде не менее 5 Вт, диаметром области эффективной генерации излучения не более 100 мкм и сроком службы катода не менее 10000 часов.

Основным инструментом разработки оборудования для научных исследований, в том числе, приборов электронной и ионной оптики в настоящее время считаются системы автоматизированного проектирования которых (CAIIP), составляющими элементами являются системы компьютерного моделирования процессов и устройств - CAE (Computer Aided Engineering), системы автоматизированной разработки конструкторско-технологической документации - CAD (Computer Aided Design) и системы автоматизированного производства на станках с программным управлением - CAM (Computer Aided Manufacturing).

Цель и задачи работы:

Целью диссертационной работы является создание острофокусного рентгеновского источника со сроком службы термоэлектронного катода не менее 10000 часов, мощность не менее 5 Вт и диаметром области генерации излучения не более 100 мкм.

Для её достижения следует решить следующие задачи:

1. Повысить точность расчета потенциалов методом граничных элементов в аксиально-симметричных системах, реализованного в CAE Focus.

2. Разработать алгоритм повышения точности расчёта электростатического поля (градиента потенциала) на сетке потенциалов.

3. Распараллелить алгоритм расчёта электростатического поля.

4. Разработать экспорт данных из САЕ Focus в САД-системы.

5. Разработать и оптимизировать электронно-оптическую схему острофокусного рентгеновского источника.

6. Разработать конструкторскую документацию острофокусного рентгеновского источника.

7. Изготовить и испытать острофокусный рентгеновский источник.

8. Разработать экспериментальный макет установки микрофокусной рентгеноскопии.

9. Разработать программу для обработки рентгеновских изображений.

Научная новизна:

1. Выявлена возможность повышения точности и скорости вычислений электростатического поля при моделировании электронно-оптических систем за счёт применения векторного представления характеристик электростатических полей.

2. Разработан адаптивный метод дифференцирования при численной оценке градиента потенциала, повышающий точность расчёта на 4 порядка от известных в окрестностях поверхности полеобразующих электродов.

3. Разработан способ расчёта электростатических полей электроннооптических систем с разномасштабными электродами методом граничных элементов с использованием распараллеливания вычислений.

4. Численные и экспериментальные методы позволили разработать рентгеновский источник с острофокусным возбуждением электронным пучком, большим сроком службы (не менее 10000 часов) и диаметром области генерации излучения не более 100 мкм.

Практическая значимость диссертационной работы заключается в том, что полученные результаты могут быть использованы для:

- Быстрого и точного создания компьютерных моделей аксиальносимметричных электронно-оптических систем
- Проведения исследований в области моделирования систем электронной оптики.

- Создания новых, высокоточных и быстрых алгоритмов для расчёта полей методом граничных элементов.
- Создания промышленного образца микрофокусного рентгеновского источника с высоким сроком эксплуатации.
- Создания промышленного образца установки микрофокусной рентгенографии с компьютерной обработкой полученных рентгеновских изображений.

Научные положения, выносимые на защиту:

1. Применение векторного представления характеристик электростатических полей при моделировании электронно-оптических систем позволяет повысить точность и скорость вычислений в два раза.

2. Использование адаптивного алгоритма при численном дифференцировании по конечно-разностным формулам позволяет на 4-5 порядков увеличить точность расчёта градиента потенциала вблизи границ электродов электронно-оптической системы.

3. Конструкция острофокусного рентгеновского источника с термокатодом из нескольких вольфрамовых спиралей и фокусирующим электродом переменной толщины позволяет достичь срока службы не менее 10000 часов, диаметра области генерации излучения не более 100 мкм и мощности не менее 5 Вт.

Апробация работы.

Основные положения диссертации докладывались и обсуждались на 2 всероссийских и 2 международных научно-технических конференциях: всероссийская конференция с элементами научной школы для молодёжи «Актуальные проблемы развития нано-, микро- и оптоэлектроники» (Рязань, 2010г.), десятый всероссийский семинар «Проблемы теоретической и прикладной электронной и ионной оптики» (Москва, 2011г.), международная научная конференция «Хаос и структуры в нелинейных системах. Теория и эксперимент» (Караганда, 2012г.), международная конференция по компьютерным технологиям в физических и инженерных приложениях (Санкт-Петербург, 2014).

Публикации.

По результатам диссертационного исследования опубликовано 5 тезисов докладов на международных и всероссийских конференциях, 3 статьи в изданиях ВАК.

Структура и объём диссертационного исследования.

Диссертация состоит из введения, четырёх глав, заключения, списка литературы и приложения. Содержит 164 страницы, 103 рисунка, 14 таблиц.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Введение содержит обоснование актуальности темы, формулировку цели и задач работы, основные положения, выносимые на защиту, определяет содержание и методы выполнения работы. Также показана научная новизна и практическая значимость результатов исследований.

В первой главе «Микрофокусные рентгеновские источники и средства проектирования приборов вакуумной электроники» показано текущее состояние предметной области работы, проанализированы существующие методы моделирования систем электронной оптики, а также САПР, построенные на их основе, выявлены их недостатки и «узкие» места. Обосновано применение метода граничных элементов, как наиболее перспективного по ряду параметров.

Для разработки острофокусного рентгеновского источника с большим сроком службы и малым диаметром пятна генерации излучения необходимо решить ряд математических задач, повышающих точность и скорость моделирования электронно-оптических систем.

Во второй главе «Методы и алгоритмы повышения точности и скорости расчёта электростатических полей» рассмотрен комплекс математических моделей расчёта электростатических полей, а также методы повышения их точности и производительности.

В качестве метода численного моделирования электростатических полей в работе выбран метод граничных элементов (МГЭ). Численная реализация МГЭ базируется на уравнении

$$\gamma u(\xi) + \sum_{i=1}^{N} u_{j} H_{j}(\xi) = \sum_{i=1}^{N} q_{j} F_{j}(\xi), \qquad (1)$$

где $u(\xi)$ – потенциал в точке ξ , $\xi \in \Omega^{j=1} \Gamma$, Ω - исследуемая область, Γ – граница области, u_j – потенциалы граничных элементов, совокупность которых есть граница Γ , q_j – нормальная производная граничного потенциала, $H_j(\xi)$, $F_j(\xi)$ – граничные интегралы, по сути представляющие собой некоторые функции координат точки ξ ; $\gamma = 4\pi$ для $\xi \in \Omega$ и $\gamma = 2\pi$ для $\xi \in \Gamma$.

Основная проблема практического использования МГЭ заключена в присущей интегральным методам теории потенциала сингулярности функций. Успешно подынтегральных решена залача выделения сингулярностей (при решении обратной задачи) и квазисингулярностей (при решении прямой задачи) подынтегральных функций (см. Журнал вычислит. матем. и матем. физики. 1995. - Т. 35. - № 4), что позволило обеспечить точность вычисления потенциала порядка 10⁻⁴%. При этом вычисление интеграла *H_{ii}* с особенностью в подынтегральной функции на этапе решения обратной задачи производится через сумму регулярных Н_{ii} интегралов по формуле:

$$2\pi + H_{ii} = -\sum_{j=1, i \neq j}^{N} H_{ij}$$
 (2).

6

Однако анализ показывает, что формула для вычисления интеграла H_{ii} может быть упрощена, т.к. для сингулярных плоских граничных элементов в трехмерных задачах, или для сингулярных прямолинейных элементов в двумерных задачах производная по нормали от Ньютонова потенциала $U^*(\xi,\chi)$, являющаяся подынтегральной функцией в H_{ii} , равна нулю. Действительно $gradU^*(\xi,\chi) \perp \vec{n}$, то $Q^*(\xi,\chi) = \partial U^*/\partial n = gradU^*(\xi,\chi) \cdot \vec{n} = 0$. Откуда для внутренней задачи Дирихле $H_{ii} = 0$. Вследствие скачка потенциала двойного слоя при пересечении границы области изнутри наружу будем иметь следующее значение интеграла H_{ii} для внешней задачи:

$$H_{ii} = 4\pi \tag{3}$$

Предложенная процедура оценки H_{ii} приводит к экономии времени вычислений вследствие исключения циклов вычислений и значительно (в несколько раз) повышает точность расчёта потенциалов в целом.

С целью проведения траекторного анализа электронно-оптических систем (ЭОС) расчетная область покрывается сеткой потенциалов, рассчитываемых методом граничных элементов, и по формулам численного дифференцирования вычисляется функция распределения напряженности поля (градиента потенциала).

Анализ данных численного дифференцирования функций распределения потенциала, осуществляемого по стандартным конечноразностным формулам, позволяет сделать вывод о низкой точности вычислений. Средняя относительная погрешность - 0,007, максимальная относительная погрешность - 0,44.

В работе предлагается алгоритм значительно более точного решения задачи, использующий информацию о поведении дифференцируемой функции на различных участках для применения конечно-разностных формул вычисления производных по левым, правым и центральным разностям.

Формулы вычисления производных по левым разностям

i-4 i-3 i-2 i-1 i $E_i = U'_i = ELL = (3U_{i-4} - 16U_{i-3} + 36U_{i-2} - 48U_{i-1} + 25U_i)/12h;$ i-3 i-2 i-1 i i+1

$$E_i = U'_i = EL = (-U_{i-3} + 6U_{i-2} - 18U_{i-1} + 10U_i + 3U_{i+1})/12h;$$

Формулы вычисления производных по центральным разностям

i-2 i-1 i i+1 i+2 $E_i=U'_i=EC=(U_{i-2}-8U_{i-1}+8U_{i+1}-U_{i+2})/12h;$ $E_{i} = U'_{i} = ER = (-3U_{i-1} - 10U_{i} + 18U_{i+1} - 6U_{i+2} + U_{i+3})/12h;$ i + 1 + 2 + 3 + 4

 $E_i = U'_i = ERR = (-25U_i + 48U_{i+1} - 36U_{i+2} + 16U_{i+3} - 3U_{i+4})/12h.$

На основании формул вычисления производных по правым, центральным и левым разностям, а также на основании данных о нахождении точек $r_i=i\cdot h$, i=0,1,2... *п* внутри какого-либо электрода ($P_i=0$, или $P_i=1$) разработан алгоритм и программа вычисления градиента функции:

if P[i]=1 then E[i]:=0 // *i-я точка внутри электрода* (*-----точка вне электрода------*) else if P[i-2]+P[i-1]+P[i+1]+P[i+2]=0 then E[i]:=EC // все соседи – вне, else if P[i-2]+P[i-1]=2 then E[i]:=ERR // см. Рисунок I, а, else if P[i-2]=1 then E[i]:=ER // см. Рисунок I, б, else if P[i+2]+P[i+1]=2 then E[i]:=ELL // см. Рисунок I, е, else if P[i+2]=1 then E[i]:=EL // см. Рисунок I, г.

Рисунок 1 – К вычислению градиента потенциала по правым (а, б) и левым разностям (в, г).

Численные оценки относительных погрешностей применения представленных выше аппроксимаций следующие: средняя относительная погрешность – 0.0000007, максимальная погрешность – 0.00006.

С целью более эффективного использования ресурсов современной вычислительной техники в диссертации реализован алгоритм распараллеливания вычислений при расчёте сетки потенциалов методом граничных элементов [1].

Линейный алгоритм расчёта сетки потенциалов $u_{ij}=F(x_j, y_i)$ в прямоугольной области $x \in [Xmin, Xmax], y \in [Ymin, Ymax]$ методом граничных элементов может быть выражен средствами языка PASCAL следующим образом:

```
for i:=1 to nY do
begin
    Y:=Ymin+Hy*(i-1);
    for j:=1 to nX do
    begin
        X:=Xmin+Hx*(j-1);
        U[i,j]:=F(X,Y);
    end; (*j*)
end; (*i*).
```

Здесь *nX*, nY – количество узлов сетки по направлениям ∂X и ∂Y , соответственно; Hx=(Xmax-Xmin)/(nX-1), Hy=(Ymax-Ymin)/(nY-1).

Наиболее трудоёмкой задачей в данном цикле является вычисление функции F(X, Y), представляющей собой численно определяемый интеграл от функции, являющейся комбинацией полных эллиптических интегралов первого и второго родов. Для разделения процесса вычислений выделим как независимую часть цикл по *j*. При запуске такого цикла с различными значениями *Y* получим уменьшение итераций цикла по *i*. Модифицированный алгоритм вычисления сетки потенциалов с помощью двух независимых потоков будет выглядеть следующим образом:

Procedure Thread(i,Y) // Выполнение і-й итерации цикла по ј.

```
Begin
for j:=1 to nX do
begin
X:=Xmin+Hx*(j-1);
U[i,j]:=F(X,Y);
end; (*j*)
End; (*Thread*)
```

```
(*-modified process-*)
Imax:= (nY mod 2);
for i:=1 to Imax do
```

// Количество итераций по і.

// Основной цикл вычислений.

```
begin

Y:= Ymin + Hy*(2*i-2);

Thread(i,Y); // Запуск 1-го потока

Y:= Ymin + Hy*(2*i-1);

Thread(i,Y); // Запуск 2-го потока

Wait($DEC0DE);

end; (*i*)
```

В основном цикле асинхронный запуск процедуры Thread(i,Y) происходит дважды, таким образом, количество итераций уменьшается вдвое. Количество потоков может варьироваться. Наиболее эффективным с точки зрения производительности будет случай, когда их количество будет равно количеству процессоров в системе.

Полученные результаты были внедрены в программный комплекс по моделированию электронно-оптических систем «ФОКУС». Результаты тестирования разработанного многопоточного алгоритма представлены на рисунках 2 и 3.

Рисунок 2 - Результаты тестирования на двух 2-х ядерных ЭВМ разных архитектур.

Конфигурация тестового стенда:

 Процессор: Intel Xeon, 2.6 GHz; Количество ядер в процессоре: 4; OC: Windows 2003 Server, SP2; O3У: 4 Gb.

Рисунок 3 - Результаты тестирования на 4-х ядерной ЭВМ.

Применение разработанных способов увеличения точности и скорости моделирования электронно-оптических систем позволило в реальном времени оптимизировать геометрию фокусирующего электрода рентгеновского источника с диаметром электронного пятна в несколько десятков мкм на аноде.

В третьей главе «Автоматизация разработки конструкторской документации для ускорения процесса моделирования электроннооптических систем» рассмотрен процесс обмена данными между рассмотрены способы И особенности приложениями, построения трёхмерных моделей в среде AutoCAD, разработан алгоритм и программная переноса конструкции электронно-оптической системы из реализация программы «ФОКУС» в программу AutoCAD. что позволило автоматизировать процесс разработки конструкторской документации.

B четвёртой главе «Проектирование, разработка И острофокусного экспериментальное исследование рентгеновского источника и стенда тестирования» решены вопросы создания установки микрофокусной рентгенографии микрофокусным рентгеновским с источником. имеюшим высокий срок эксплуатации, моделирование электронно-оптической схемы которого проведено средствами разработанного программного обеспечения.

Значительный срок службы рентгеновского источника может обеспечить прямонакальный катод на основе вольфрамовой спирали, используемой в промышленно выпускаемых лампах дневного света. При этом необходимая площадь и ток эмиссии, задающие выделяемую на аноде (антикатоде) мощность, достигается параллельным расположением нескольких таких спиралей. На рисунке 4 представлена конструкция разработанного катодного узла.

Рисунок 4 - Схема катодного узла: 1 – катод, состоящий из нескольких параллельных спиралей, 2 – спираль, 3 – выходное окно для вывода эмитированных с катода электронов.

Малый диаметр фокального пятна эмитированных с катода электронов в известных и выпускаемых промышленностью рентгеновских источниках достигается использованием острийных катодов, которые имеют малый срок службы и малую площадь эмиссии, определяемую площадью острия, но не требуют специальных усилий для обеспечения острого фокуса.

В нашем случае, требуются специальные меры для обеспечения малого (порядка 100 мкм) диаметра фокального пятна. В работе предложена, исследована и оптимизирована фокусирующая система рентгеновского источника. Схема работы представлена на рисунке 5.

Электроны, эмитированные с нагретого катода 1, состоящего из нескольких параллельных вольфрамовых спиралей, попадают в ускоряющее поле, созданное напряжением Vc между катодом 1 и корпусом 5, в торце которого расположен антикатод 7 прострельного типа, и фокусируются полем короткофокусной линзы, образованной экраном 2 катода и цилиндрическим фокусирующим электродом 4 переменной толщины с потенциалом Vf, формируя виртуальный катод 9 микронных размеров; продолжают движение по траекториям 10, задаваемое фокусирующим полем иммерсионной линзы, образованной заземленным корпусом 5 источника и фокусирующим электродом 4, и образуют микронное изображение (около 40 мкм) виртуального катода 9 на поверхности антикатода 7. При торможении электронов в веществе антикатода 7 происходит генерация рентгеновского излучения 8 непосредственно из области изображения виртуального катода на поверхности антикатода 7.

рентгеновского источника.

По результатам моделирования изготовлен и испытан острофокусный рентгеновский источник (рисунок 6).

Рисунок 6 - Внешний вид вакуумированного базового макета рентгеновского источника.

Сравнительный анализ характеристик коммерческих приборов и аналогичных экспериментальных данных оценки параметров разработанного макета источника позволяет заявить о практическом соответствии уровня его разработки лучшим мировым аналогам. При этом следует заметить, что существующие на настоящий момент типы острофокусных рентгеновских источников, имеют невысокий (порядка 1000 часов) срок службы. В то же время комплекс проведенных испытаний изготовленного макета источника говорит о высокой временной стабильности его рабочих параметров, что дает возможность спрогнозировать существенно более высокий срок (не менее 10000 часов) его службы.

Разработанный рентгеновский источник был протестирован на тестовом стенде, определены вольт-амперные характеристики катода (рисунок 7), фокусирующего электрода (рисунок 8), измерена зависимость интенсивности рентгеновского излучения от величины анодного тока (рисунок 9).

Рисунок 7 - Вольт-амперная характеристика катода.

Рисунок 8 - Зависимость тока анода от напряжения на фокусирующем электроде при Ua=40 kB: 1-Un= 3 B, 2-Un=3.5 B, 3-Un=4 B.

Рисунок 9 - Зависимость интенсивности (микрогрэй/час) рентгеновского излучения от величины анодного тока. Величины Ua=40 кВ, Uf=3000 В.

Для оценки диаметра пята был применен метод двух сечений. Измерения диаметра пята (рисунок 10): подаем на прибор все питающие напряжения, излучение из трубки попадает в измерительный блок, где щель шириной 0,2мм движется перпендикулярно излучению с помощью микрометрического винта при этом, передвигая непрерывно с точностью фиксации положения 0,01 мм, фиксируется величина интенсивности излучения. Измерение пятна сводим к нулевым значениям интенсивности излучения.

Рисунок 10 - Диаграмма направленности.

Расчет диаметра пятна:

1.
$$tg \alpha = \frac{\Delta D}{2\Delta L}$$
;
2. $tg \alpha = \frac{D2 - D1}{2*(L2 - L1)}$;
3. $tg \alpha = \frac{D1 - D0}{2L1}$;
4. $D0 = D1 - tg \alpha * 2L1$

Приближенный расчет диаметра пята (D0) производится путем оценки полученного диаметра на некотором расстоянии от окна рентгеновского источника (D1, D2). Результаты измерений и расчета диаметра пятна излучения рентгеновской трубки приведены в таблице 1.

		1 .	/ 1	17	
	1	2	3	4	5
D1, мм	4,35	4,56	4,48	4,15	4,27
D2, мм	20,7	20,34	20,96	20,65	20,97
L1, мм	1,05	1,1	1,08	1,0	1,03
L2, мм	5,05	4,95	5,1	5,0	5,1
D0, мм	0,045	0,048	0,055	0,05	0,046

Таблица 1. Расчет диаметра пятна излучения рентгеновской трубки.

Как видно из таблицы 1, экспериментальные результаты диаметра пятна излучения рентгеновского излучения (D0) колеблются в диапазоне 45-55 мкм, что практически совпадает с результатами моделирования в программе «ФОКУС», которые составляли 50 мкм.

Испытание срока службы рентгеновского источника проходило на испытательном стенде в ООО НПО «ФОН» г. Рязань. Основной целью испытаний являлось определение стабильности параметров источника. На «наработку» было поставлено три макета №1, №2 и №3.

Через каждые 200 часов «наработки» снимались рабочие параметры (Ін [мкА] – ток накала, Іа [А] – ток анода, І Re [отн. ед.] – интенсивность рентгеновского излучения) макетов при Ua=40кВ, Uн=3,5В, Uyпp=2кВ. Здесь Uyпp – напряжение на управляющем (фокусирующем) электроде.

Общая «наработка», состоящая из пяти приблизительно 200 часовых периодов, составила 910 часов. В диссертации приведены результаты испытаний, выявившие высокую стабильность параметров источников.

После просвечивания рентгеном исследуемого объекта имеется необходимость визуализации изображения. Далее рассмотрен процесс создания стенда микрофокусной рентгенографии в составе острофокусного рентгеновского источника и системы визуализации микрофокусных рентгенограмм. Разработанный макет стенда представлен на рисунке 11.

Рисунок 11 – Макет стенда микрофокусной рентгеноскопии.

Для обработки рентгеновских изображений был разработан программный комплекс обеспечивающий захват изображения и его дальнейшую обработку. Интерфейс программы представлен на рисунке 12.

Рисунок 12 - Интерфейс программы: 1 - область предпросмотра (слева), 2 - панель инструментов (справа).

ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ

1. Повышена в 2 раза точность вычисления потенциалов методом граничных элементов в аксиально-симметричных системах при сокращении времени счета.

2. Разработан алгоритм высокоточного (порядка 10⁻⁵%) расчёта напряженности электростатического поля (градиента потенциала) на сетке потенциалов с помощью адаптивного алгоритма с использованием конечно-разностных формул.

3. Разработан алгоритм распараллеливания вычислений электростатического поля методом граничных элементов, позволивший повысить скорость вычислений в количество раз, равных числу ядер процессора компьютера.

4. Разработаны программные средства экспорта данных из CAE Focus в CAD-системы.

5. Разработана конструкторская документация в среде CAD SolidWorks.

6. Разработан острофокусный рентгеновский источник с большим сроком эксплуатации, не менее 10000 часов.

7. Разработан макет установки микрофокусной рентгенографии.

8. Разработано программное обеспечение для обработки рентгеновских изображений.

Библиографический список публикаций по теме диссертационного исследования.

1. Трубицын А.А., Иванов В.С., Дягилев А.А., Гуров В.С. Реализация алгоритма распараллеливания вычислений при решении задач теории потенциала методом граничных элементов. // Вестник РГРТУ. 2009. № 27 С.46-49.

2. Трубицын А.А., Иванов В.С. Численное дифференцирование функций с изломом при оценке градиента потенциала в электронно-оптических системах // Научно-технический журнал «Вестник РГРТУ» (выпуск 46), 2013, с. 96-102

3. Иванов В.С. Практика распараллеливания вычислений при моделировании электронно-оптических систем // Прикладная физика, №2, 2014, с. 33-36

4. Иванов В.С. Разработка САЕ-системы численного моделирования аксиально-симметричных ЭОС с применением алгоритмов параллельной обработки и трёхмерная визуализация данных компьютерного анализа. // Всероссийская конференция с элементами научной школы для молодёжи «Актуальные проблемы развития нано-, микро- и оптоэлектроники», РГРТУ, 2010, с. 42-43.

5. Иванов В.С. Практика распараллеливания вычислений при компьютерном моделировании электронно-оптических систем. // Десятый всероссийский семинар «Проблемы теоретической и прикладной электронной и ионной оптики», Москва, 2011, с. 65.

6. Трубицын А.А., Иванов В.С. Одиночная линза с фокусировкой потоков заряженных частиц изменяющимся во времени электрическим полем. //

Десятый всероссийский семинар «Проблемы теоретической и прикладной электронной и ионной оптики», Москва, 2011, с. 65-66

7. Трубицын А.А., Иванов В.С., Суворов Д.В. Средства микрофокусной рентгенографии // Международная научная конференция «Хаос и структуры в нелинейных системах. Теория и эксперимент», Караганда: изд-во КарГУ, 2012, с. 616-622.

8. Ivanov V.S., Trubitsyn A.A. Analytical capabilities of the program "FOCUS" on modeling of the electron- and ion-optical systems // International Conference on Computer Technologies in Physical and Engineering Applications – ICCTPEA-2014, p.222.

Иванов Владимир Сергеевич

РАЗРАБОТКА ОСТРОФОКУСНОГО РЕНТГЕНОВСКОГО ИСТОЧНИКА С БОЛЬШИМ СРОКОМ СЛУЖБЫ

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата технических наук

Подписано в печать 23.10.2014 Формат бумаги 60х84 1/16. Бумага газетная. Печать трафаретная. Усл. печ. л. 1,0. Тираж 30 экз. Заказ Рязанский государственный радиотехнический университет. 390005, г. Рязань, ул. Гагарина, 59/1. Редакционно-издательский центр РГРТУ.