УДК 621.315.592

В.Г. Литвинов, О.А. Милованова, Н.Б. Рыбин ЭЛЕКТРОФИЗИЧЕСКИЕ СВОЙСТВА КВАНТОВО-РАЗМЕРНЫХ СТРУКТУР НА ОСНОВЕ СЕЛЕНИДОВ, СУЛЬФИДОВ ЦИНКА, КАДМИЯ, МАГНИЯ

Представлены результаты исследования низкоразмерных структур с квантовыми ямами (КЯ) ZnSSe/ZnMgSSe методом токовой релаксационной спектроскопии глубоких уровней (ТРСГУ), а также структуры CdS/CdSSe методами ТРСГУ и вольт-фарадных характеристик. В спектрах ТРСГУ обнаружены пики, обусловленные эмиссией носителей заряда из КЯ. Сделана оценка разрывов энергетических зон.

Ключевые слова: гетероструктура, квантовая яма, релаксационная спектроскопия глубоких уровней.

Введение. В настоящее время постоянно ведется поиск новых материалов и структур для создания светоизлучающих приборов, работающих в сине-зеленой области спектра. Для реализации лазера на низкоразмерной структуре с квантовыми ямами (КЯ), излучающего в синей области спектра (455-465 нм), необходимо использовать соединения с широкой запрещенной зоной. Подходящими "кандидатами" для этого являются широкозонные соединения A²B⁶. Например, ZnMgSSe с шириной запрещенной зоны $E_g \approx 3,0$ эВ является подходящим материалом для барьерных слоев, в то время как слои ZnSSe или ZnSe могут быть использованы в качестве КЯ. ZnMgSSe широко используется в инжекционных лазерах, излучающих в зеленой (525-535 нм) области спектра, но в основном в качестве обкладочных слоев, формирующих оптический волновод [1]. Была сделана попытка применить этот твердый раствор также и в лазерах для синего диапазона [2]. Относительно низкие характеристики лазера связывались, прежде всего, с проблемой получения р-типа проводимости в слоях ZnMgSSe с необходимым высоким содержанием Mg и S. Однако для лазеров с оптической накачкой или накачкой электронным пучком не требуется легирование слоев активной структуры. Такие лазеры перспективны для проекционного телевидения [3].

Результаты исследований оптических свойств широкозонного материала ZnMgSSe недостаточны для заключения о возможности использования данного материала в лазерах, излучающих в синей области спектра.

Для создания эффективного лазерного ис-

точника, излучающего в зеленой области спектра перспективна низкоразмерная структура CdSSe/CdS с гексагональной решеткой [4]. Гексагональные низкоразмерные структуры должны быть значительно более устойчивы к процессам деградации при высоких уровнях возбуждения [5]. Первый лазер на гексагональной низкоразмерной структуре был реалиизован на структуре CdSSe/CdS при продольной накачке электронным пучком [6]. Структура CdSe/CdS на гетерограницах имеет разрывы зон II-го типа [4].

В данной работе представлены результаты исследования фундаментальных характеристик квантово-размерных гетероструктур - разрывов энергетических зон в наноструктурах с КЯ ZnSSe/ZnMgSSe и CdSSe/CdS, предназначенных для работы в синей и зеленой областях спектра соответственно методом токовой релаксационной спектроскопии глубоких уровней (ТРСГУ).

Результаты исследования структур ZnSSe/ZnMgSSe. Были исследованы шесть структур ZnSSe/ZnMgSSe, выращенные МПЭ на подложках полуизолирующего GaAs. Подробности роста описаны в [7]. Структуры представляли собой набор КЯ из слоев ZnSe или ZnSSe, широкозонную погруженных В матрицу ZnMgSSe. КЯ формировались путем закрытия молекулярного потока Mg (КЯ из ZnSSe) или потоков Mg и S (КЯ из ZnSe). Ширина КЯ у всех структур кроме структуры № 16 составляла 6 нм, а ширина барьерных слоев - 160 нм. Структуры начинались с буферного слоя ZnSe толщиной 60 нм и оканчивались покровным слоем ZnSe толщиной 6 нм. Состав слоев ZnMgSSe был различным в разных структурах и почти

согласован с подложкой GaAs по периоду кристаллической решетки. Таблица 1 дает более детальное представление об исследованных структурах.

Таблица 1 – Параметры исследуемых структур ZnSSe/ZnMgSSe

N⁰	Толш	Толщина		Чис-	Т	олщина
обр.	буфер-	пок-	риал	ЛО	КЯ,	барьер-
	ного	ров-	КЯ	КЯ	HM	ного слоя
	слоя	ного				ZnMgSSe,
	ZnSe,	слоя				HM
	HM	ZnSe,				
		HM				
16	60	6	ZnSe	3	3; 4;	160
					6	
23			ZnSe	10	6	
27			ZnSe	7	6	
33			ZnSe	7	6	
35			ZnSe	2	6	
50			ZnSSe	10	6	

Для проведения измерений методом ТРСГУ были сформированы диодные структуры термическим испарением Ni через маску с площадью отверстий 0,5 мм² и нанесением In на поверхность покровного слоя ZnSe с последующей формовкой индиевых контактов методом разряда конденсатора. Образец помещался в криостат на медную фольгу, изолированную слоем фторопласта-4 толщиной 0,1 мм от заземленного столика с нагревательным элементом. Структура полученного диода представлена на рисунке 1,а, а качественная зонная диаграмма, построенная по модели Андерсона [8] для разных направлений X и Z, показана на рисунке 1, б, в. Для построения зонной диаграммы использовались значения работы выхода и электронного сродства, представленные в таблице 2, и считалось, что структура ZnSe/ZnMgSSe относится к гетеропереходам І-го типа.

Таблица 2 – Работа выхода и сродство к электрону для ряда материалов, используемых в формировании диодной структуры

inin dhodhon cipykiypbi					
Материал	Работа выхода, эВ	Сродство к электрону, эВ	Источник литературы		
ZnSe	-	4,09	[8]		
GaAs	-	4,07	[8, 10]		
Ni	4,5 - 5,2	-	[10, 11]		
In	3,8	-	[10, 11]		
Cu	4,4 - 4,5	-	[10, 11]		

Для изучения электрофизических свойств образцов использовался токовый вариант РСГУ (ТРСГУ) [9], поскольку квантово-размерная часть структуры была высокоомной, с удельным

Рисунок 1 - Схема заполнения и опустошения КЯ носителями заряда при ТРСГУ: а - структура образца в разрезе, пунктиром показаны линии тока в структуре; б и в - зонная диаграмма образца с тремя квантовыми ямами при нулевом смещении в направлении X и Z соответственно; г - зонная диаграмма структуры при одновременном облучении и действии заполняющего импульса напряжения

положительной полярности

сопротивлением не менее 10⁶ Ом.см, которое было оценено по начальному участку вольтамперных характеристик. ТРСГУ-спектры измерялись в диапазоне температур 100 – 300 К. При более высоких температурах увеличивался ток утечки через образец и реализовать необходимые для осуществления методики ТРСГУ условия не представлялось возможным.

При амплитуде импульса напряжения заполнения $U_f = 0$ В и импульса опустошения U_r = -10 В сигнал от эмиссии носителей заряда с ГУ не обнаруживался, поскольку ток через структуру ограничен высоким сопротивлением базы диодной структуры. В связи с этим для заполнения ловушек и КЯ использовалось излучение фиолетового светодиода с максимумом интенсивности излучения на длине волны 412 нм и полушириной на полувысоте 27 нм. Освещение образца осуществлялось во время действия импульса заполнения. Зонная диаграмма диодной структуры при одновременном облучении и действии заполняющего импульса напряжения положительной полярности представлена на рисунке 1,г.

Амплитуды импульсов U_f и U_r были выбраны + 2 и - 10 В соответственно. При облучении структуры квантами с энергией около 3 эВ в КЯ и в барьерных слоях генерируются электронно-дырочные пары, а при одновременном наложении электрического поля - направленное перемещение носителей заряда. Квазиуровень Ферми для электронов в квантоворазмерной части структуры оказывается выше основного уровня размерного квантования в КЯ, поэтому КЯ заполняются электронами. Квазиуровень Ферми для дырок расположен выше уровней размерного квантования в КЯ в валентной зоне, поэтому дырки быстро, за время максвелловской релаксации [12] выносятся в сторону полуизолирующей подложки GaAs и омического контакта.

Амплитуда импульса заполнения выбиралась из условия заполнения КЯ электронами.

На рисунке 2 представлены спектры ТРСГУ для шести исследованных образцов. В низкотемпературной области спектра во всех образцах наблюдается пик E1, энергия активации E_a которого коррелировала с энергетическим расстоянием между линиями излучения КЯ и барьерного слоя, что подробно описано в работе [7]. Наблюдаемая корреляция позволяет предположить, что ГУ E1 связан с эмиссией электронов с основного энергетического уровня КЯ в зону проводимости барьерного слоя. На рисунке 2 сплошной линией изображен также узкий пик, являющийся результатом моделирования ТРСГУ-спектра эмиссии электронов с единственного ГУ для прямоугольной взвешивающей функции дискриминатора с помощью специализированного пакета прикладных программ [13]. Параметры ГУ соответствуют параметрам ГУ ЕІ образца № 16 (см. таблицу 3). Очевидно, что все экспериментальные пики более широкие по сравнению с идеальным случаем. Следовательно, в указанных образцах линия Е1 на ТРСГУспектрах связана с эмиссией носителей заряда с нескольких ГУ, незначительно отличающихся энергией активации и сечением захвата. Это, в свою очередь, связано с разбросом значений ширины запрещенной зоны барьерного слоя в разных местах структуры, где происходит эмиссия электронов из КЯ, из-за наличия нескольких фаз в барьерном слое. Обнаружить отдельные пики не удалось из-за недостаточного разрешения дискриминатора ТРСГУ-спектрометра по энергии. Кроме пиков *E1* в образцах № 16 и 50 наблюдаются еще "плечи" Е1*, в образце № 35 – низко-интенсивный пик Е1*, а в образце № 23 в высокотемпературной области ТРСГУспектра наблюдается очень широкий пик Е2, положение максимума которого не зависит от температуры. Происхождение этих пиков невыяснено.

Рисунок 2 - ТРСГУ-спектры шести исследованных структур ZnSSe/ZnMgSSe

Для выяснения особенностей потенциального рельефа вблизи ловушек *E1*, соответствующих КЯ Zn(S)Se/ZnMgSSe, наряду с постоянной

времени релаксации, варьировалась также и длительность импульса заполнения t_p . Обнаруженная зависимость амплитуды ТРСГУ-пика от t_p указывает на существование потенциального барьера для захвата электронов в КЯ со стороны барьерного слоя ZnMgSSe. Кинетика захвата может быть представлена как [9, 12]:

$$S(t_p) = S_{\infty} \left[I - exp(-c_n t_p) \right], \qquad (1)$$

где $S(t_p)$ – высота ТРСГУ-пика, S_{∞} – высота пика, соответствующая заполнению электронами всех состояний в КЯ, t_p – длительность импульса заполнения, $c_n = \sigma vn$ – скорость захвата, σ – сечение захвата, v – средняя тепловая скорость электронов, n – концентрация свободных электронов.

Обычно предполагается, что *n* практически не зависит от температуры. В данном случае *n* зависит от количества квантов излучения, поглощаемых во время действия импульса заполнения.

Зависимость $\ln[1 - S(t_p)/S_{\infty}]$ от t_p исследовалась при различных температурах максимума ТРСГУ-пика, т.е. при различных постоянных времени релаксации. В идеальном случае зависимость должна быть линейной. Экспериментальные точки аппроксимировались прямой линией по методу наименьших квадратов. По углу наклона полученных прямых при известной концентрации свободных электронов можно вычислить значение σ [9]. Исследуемые структуры состояли из высокоомных полупроводниковых слоев, контакты формировались на покровном слое ZnSe, поэтому возникли сложности с корректным определением концентрации свободных носителей заряда. Несмотря на отсутствие данных о величине n, из зависимостей ln/l $-S(t_p)/S_{\infty}$] от t_p были определены произведения оп при различных температурах, затем экспериментальная зависимость $n\sigma(T)$ аппроксимировалась следующим выражением [9]:

$$n\sigma(t_p) = n\sigma_{\infty} \exp\left(-\frac{E_{\sigma}}{kT}\right),$$
 (2)

где σ_{∞} — постоянная, не зависящая от температуры, E_{σ} — высота барьера для захвата электронов, k — постоянная Больцмана. По зависимости (2) были определены величины E_{σ} . Параметры E_{σ} , наряду с другими данными по ГУ, представлены в таблице 3.

Барьер для захвата электронов в КЯ может быть обусловлен наличием пограничного диполя, образованного заряженными дефектами [14]. Появление дефектов, вероятно, происходит из-за нарушения стехиометрии вблизи КЯ. Значительно меньшие барьеры наблюдались на аналогичных структурах, выращенных методом парофазной эпитаксии из металлоорганических соединений [15]. Для уменьшения концентрации дефектов, по-видимому, необходимо использовать дополнительные источники молекулярных потоков Zn или Se. Это позволит независимо управлять стехиометрией барьерных слоев и слоев КЯ.

Таблица 3 – Параметры обнаруженных методом ТРСГУ глубоких уровней

№	ΔE_{CL} ,	ΓУ	<i>Е</i> _{<i>a</i>} , мэВ	σ , cm ²	$N_t \cdot d$,	E_{σ} ,
обр.	мэВ				см ⁻²	мэВ
16	165±10	<i>E1</i>	153±20	1,6·10 ⁻¹⁴	1,3·10 ⁹	75
23	445±50	El	264±20	$3,2.10^{-15}$	$1,5.10^{9}$	87
27	270±25	El	220±20	$8,1.10^{-15}$	$4,5.10^{9}$	36
33	207±18	El	165±20	$1,1.10^{-14}$	$3,8.10^{9}$	20
35	265±65	E1	201±20	6,0·10 ⁻¹⁵	$6,2.10^{9}$	52
50	230±40	El	175±20	$3,1.10^{-14}$	$1,4.10^{10}$	56

В таблице 3: E_a – энергия активации, σ – сечение захвата, $N_t \cdot d$ – слоевая концентрация, E_{σ} – высота барьера для захвата электронов в ловушку, $\Delta E_{\rm CL}$ - энергетическое расстояние между линиями излучения КЯ и барьерных слоев по данным работы [7]

Для оценки параметра разрыва зоны проводимости Q_C воспользуемся следующим соотношением:

$$Q_C = \frac{E_a - E_\sigma}{\Delta E_{CL}}.$$
 (3)

Здесь пренебрегаем размерным квантованием уровней энергии в КЯ, поскольку энергия основного уровня для ямы ZnSe шириной 6 нм меньше ошибки определения E_a . Рассчитанные параметры разрывов зоны проводимости представлены в таблице 4.

Таблица 4 – Рассчитанные значения параметров разрыва зоны проводимости Q_C

<u>№</u> образца	Q_C
16	0,729±0,187
23	0,401±0,045
27	0,712±0,078
33	0,732±0,101
35	0,727±0,098
50	0,626±0,105

Из таблицы 4 видно, что для большинства исследованных структур параметр Q_C равен 0,71-0,73. Однако для структуры № 23 этот параметр существенно меньше. Это связано с тем, что данная структура рассогласована относительно GaAs с сторону меньших значений периода кристаллической решетки (большего содержания S).

Результаты исследования структуры

CdS/CdSSe. Исследуемая структура была получена методом парофазной эпитаксии из металлоорганических соединений. Подробности роста описаны в работе [4]. На подложке нелегированного CdS были выращены буферный слой CdS толщиной 0,35 мкм, 40 слоев CdS_{0.7}Se_{0.3} толщиной 3 нм, разделенных барьерными слоями CdS толщиной 142 нм. Верхний слой CdS, покрывающий последний слой CdSSe, имел также толщину 142 нм. Слои CdSSe образовывали квантовую яму (КЯ) для дырок и туннельно-прозрачный барьер для электронов. Суммарная толщина эпитаксиальной структуры была равна примерно 6 мкм. Далее подложка CdS частично удалялась механической полировкой, затем полирующим травлением в растворе CrO₃ в HCl. Оставшаяся суммарная толщина CdS до первого слоя CdSSe имела толщину примерно 11 мкм. Основные параметры структуры представлены в таблице 5.

Таблица 5 – Параметры исследованной структуры

Толщина	Ширина КЯ	Толщина	Чис-	Период
слоя CdS,	$CdS_{0.65}Se_{0.35}$,	барьерны	ло	струк-
МКМ	HM	х слоев	КЯ	туры,
		CdS, нм		HM
11	3	142	40	145

На структуру на обе стороны были нанесены диэлектрические отражающие покрытия из чередующихся четвертьволновых слоев SiO₂/ZrO₂, формирующие оптический резонатор для получения лазерной генерации. Толщина этих покрытий была примерно 1,6 мкм.

После исследования лазерных характеристик структура с зеркальными покрытиями с помощью серебряной пасты крепилась на подложке n⁺-GaAs. Для проведения электрических измерений были сформированы омический контакт и контакт Шоттки путем термического испарения In на обратную сторону подложки GaAs и Ni на поверхность CdS. Диодная структура изучалась методами вольт-фарадных характеристик (ВФХ), ТРСГУ.

Сначала исследовалась ВФХ структуры с использованием измерителя иммитанса Е7-12. Это необходимо для определения особенностей распределения концентрации свободных носителей заряда и режимов измерения методом РСГУ. Частота измерительного сигнала составляла 1 МГц. Зависимость квадрата обратной удельной емкости от обратного напряжения при КТ представлена на рисунке 3. Эта зависимость была далее использована для определения профиля распределения концентрации свободных носителей заряда, которыми оказались электроны. В приближении обедненного слоя [16] имеем:

$$N(z) = N_d(z) - N_a(z) = (C/S)^3 / [q \varepsilon \varepsilon_0 (d(C/S)/dV)],$$

$$z = S \varepsilon \varepsilon_0 / C,$$
(4)

где $N_d(z)$ и $N_a(z)$ – концентрации ионизированных доноров и акцепторов на расстоянии z от внешней границы раздела CdS и SiO₂/ZrO₂, q – заряд электрона, ε – относительная диэлектрическая проницаемость полупроводниковой структуры (мы использовали значение ε = 8,3 для CdS, так как тонкие прослойки CdSSe составляют малую долю всего объема), ε_0 – абсолютная диэлектрическая проницаемость, S – площадь наименьшего контакта, z и C – ширина и емкость обедненного слоя в полупроводнике. Емкость C определяли из ВФХ с учетом наличия двух последовательных емкостей, образованных двумя диэлектрическими многослойными покрытиями SiO₂/ZrO₂ толщиной по 1,6 мкм.

Рисунок 3 - ВФ зависимость квадрата обратной удельной емкости от обратного напряжения при КТ

Результаты расчета N(z) по выражению (1) показаны на рисунке 4. Среднее значение концентрации свободных электронов в структуре 4.10¹³ см⁻³ было получено при аппроксимации зависимости $S^2/C^2(U_{rev})$ прямой линией по методу наименьших квадратов. На расстояниях 8 и 10,5 мкм от внешней границы раздела CdS и SiO₂/ZrO₂, что соответствует обратному смещению -3,9 и -7,7 В, наблюдаются провалы в зависимости N(z). Провал при z = 8 мкм может быть связан с диффузионным фронтом собственточечных дефектов из-за изменения ных стехиометрии на поверхности подложки CdS во время эпитаксии. Действительно, монокристаллическая подложка была выращена при температуре примерно 1050 °C, а эпитаксия проходила при температуре 380 °C, причем при другом соотношении Cd/S в паровой фазе [4]. Провал при z = 10,5 мкм связан, по нашему мнению, с границей раздела между подложкой CdS и

эпитаксиальной структурой CdSSe/CdS, где, возможно, имеет место повышенная концентрация примесей из-за недостаточной очистки поверхности подложки перед началом процесса эпитаксии.

Рисунок 4 - Изменение концентрации свободных электронов по глубине структуры

В результате уровень Ферми понижается относительно края зоны проводимости. После второго провала наблюдается пик концентрации электронов при z = 11 мкм. Этот пик связан с первой прослойкой CdSSe. Вероятно, он связан с наиболее сильным изгибом зон вблизи гетерограниц первой прослойки. Слои CdSSe вносят внутренние напряжения из-за несоответствия параметров решетки CdS и CdSSe, которые накапливаются по мере роста числа прослоек CdSSe. Это может приводить к генерации точечных или протяженных дефектов, которые понижают уровень Ферми в целом, а следовательно, и концентрацию электронов. Важным результатом исследования C-V характеристик является то, что при обратном напряжении, меньшем -8,5 В (большем по абсолютной величине), край слоя объемного заряда достигает квантово-размерной части структуры. Мы не смогли зарегистрировать накопление дырок в каждой КЯ, что связано с ограничением разрешения применяемого метода ВФХ в пределах дебаевской длины

экранирования
$$L_D = \sqrt{\frac{2\varepsilon\varepsilon_0 kT}{q^2 N}}$$
, где k –

постоянная Больцмана, T – абсолютная температура. При концентрации электронов $N = 7 \cdot 10^{13}$ см⁻³ (в пике) получаем $L_D = 580$ нм, что значительно превышает расстояние между КЯ 145 нм. Точка пересечения зависимости $S^2/C^2(U_{rev})$ с осью напряжений дает значение $U_i = 1,5$ В. Обычно U_i связывают с высотой барьера Шоттки. Однако в нашем случае высота этого барьера не может быть корректно определена из-за нали-

чия диэлектрических прослоек SiO₂/ZrO₂ [12].

Спектры РСГУ при амплитуде заполняющего импульса $U_f = 0$ В и амплитуде импульса опустошения $U_r = -5$ В в диапазоне времен релаксации 38,69 – 232,11 мкс показаны на рисунке 5. Скорость эмиссии электронов (дырок) с ГУ задается выражением [17]:

$$e_{n(p)} = N_{C(V)}\sigma_{\infty} v \exp(-\Delta E_{t}/k_{B}T), \qquad (5)$$

где $e_{n(p)}$ – скорость эмиссии, $N_{C(V)}$ – эффективная плотность состояний в зоне проводимости (валентной зоне), σ_{∞} – сечение захвата при бесконечно большой температуре. При указанных условиях заполнения уровень Ферми "сканирует" запрещенную зону в слое CdS в диапазоне расстояний от поверхности 4,5-8,9 мкм. Край слоя объемного заряда (СОЗ) оказывается не резким - "размытым". Величина "размытия" имеет порядок дебаевской длины экрани-ТРСГУ-спектрометр находится рования. в условиях регистрации ловушек для электронов или глубоких доноров. В таком режиме обнаружено два ГУ ЕЗ и Е4 (см. таблицу 6).

Рисунок 5 - ТРСГУ-спектры структуры. $U_f = 0$ В, $U_r = -5$ В

Таблица 6 – Параметры обнаруженных методом ТРСГУ глубоких уровней

ГУ	ΔE_t , $\Im \mathbf{B}$	σ , cm ²	$N_t \cdot d$, см ⁻²	N_t, cm^{-3}
E3	0,331±0,03	$3,1.10^{-21}$	$2,19.10^{8}$	$4,59 \cdot 10^{11}$
<i>E4</i>	1,145±0,06	1,6.10-11	$3,94.10^{8}$	8,26·10 ¹¹
<i>E5</i>	0,279±0,04	$1,92 \cdot 10^{-20}$	$1,40.10^{8}$	$1,17\cdot10^{14}$

^{*)} – концентрация рассчитана исходя из ширины 4 КЯ, т.е. 12 нм.

В таблице 6: ΔE_t – энергия активации, σ – сечение захвата, $N_t \cdot d$ – слоевая концентрация, N_t – концентрация дефектов с ГУ

Для обнаружения эмиссии дырок с основного уровня размерного квантования в КЯ CdSSe мы увеличили амплитуду импульса опус-

тошения до -10 В, чтобы КЯ попадали в СОЗ, и амплитуду импульса заполнения до 1 В для инжектирования неосновных носителей заряда дырок в базу диодной структуры. При обратном смещении -10 В край СОЗ расположен на расстоянии 11,7 мкм от поверхности CdS, т.е. уходит примерно на 0,7 мкм вглубь квантоворазмерной части структуры общей толщиной 6 мкм. Таким образом, в СОЗ попадает примерно 4 КЯ. РСГУ спектры, зарегистрированные в таких условиях, представлены на рисунке 6. В температурном диапазоне 280-380 °С спектры практически не отличаются от спектров, представленных на рисунке 5. Однако при меньших температурах появляется дополнительный низкотемпературный пик Е5, который исчезал при уменьшении амплитуды импульса заполнения до 0 В. Мы считаем, что пик Е5 связан с эмиссией дырок из КЯ.

Рисунок 6 - ТРСГУ-спектры структуры. $U_f = 1$ В, $U_r = -10$ В

Энергия активации пика *E5* соответствует энергии залегания основного состояния дырки в КЯ относительно края валентной зоны CdS. Для определения разрыва валентной зоны на гетерогранице надо вычислить положение основного уровня квантования дырки $E_{\rm h1}$ относительно края валентной зоны CdSSe в КЯ. Воспользовавшись процедурой расчета, представленной в [18], и предполагая, что масса дырки в направлении квантования (параллельно оси C) линейно изменяется с параметром состава *х* для CdS_{1-x}Se_x так, что для *x*=0,3 m_{h/}=4,25 *m*₀ (m_{h/}=5m₀ для CdS и m_{h/} = 2,5 m₀ для CdSe [19]), получаем оценку $E_{\rm h1}$ = 8 мэВ. Тогда для разрыва валентной зоны находим $\Delta E_v = E_t(E5) + E_{h1} = 287$ мэВ.

Заключение. Таким образом, в работе продемонстрировано применение метода ТРСГУ для изучения особенностей зонных диаграмм гетероструктур с квантовыми ямами.

Работа выполнена при поддержке грантом Президента РФ МК-2616.2008.2, Федерального

агентства по образованию, ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009-2013 годы.

Библиографический список

1. *Itoch S., Nakano K., Ishibashi A.* Current status and future prospects of ZnSe-based light-emitting devices // J. Crystal Growth. 2000. Vol.214/215. P.1029-1034.

2. Grillo D.C., Han J., Ringle M., Hua G., Gunshor R.L., Kelkar P., Kozlov V., Jeon H., Nurmikko A.V. Blue ZnSe quantum-well diode laser // Electron. Lett. 1994. Vol.30. P.2131-2133.

3. *Tiberi M.D., Kozlovsky V.I.* Electron Beam Pumped VCSEL Light Source for Projection Display // Proceedings of SPIE. 2005. Vol.5740 to be published.

4. V.I. Kozlovsky, P.I. Kuznetsov, V.G. Litvinov, D.A. Sannikov, and G.G. Yakushcheva. Electrophysical and cathodoluminescent properties of low-dimensional CdSSe/CdS structure // Phys. Stat. Sol. (c), 3, No.4, 2006. P.1156-1159.

5. Wu B.J., DePuydt J.M., Haugen G.M., Höfler G.E., Haase M.A., Cheng H., Guha S., Qiu J., Kuo L.H., Salamanca-Riba L. Wide band gap MgZnSSe grown on (001) GaAs by molecular beam epitaxy // Appl. Phys. Lett. 1995. Vol.66. P.3462-3464.

6. Kalisch H., Lünenbürger M., Hamadeh H., Xu J., Heuken M. Optimized metalorganic vapour phase epitaxy of ZnMgSSe heterostructures // J. Crystal Growth. 1998. Vol.184/185. P.129-133.

7. Козловский В.И., Казаков И.П., Литвинов В.Г., Скасырский Я.К., Забежайлов А.О., Дианов Е.М. Электрофизические свойства и катодолюминесценция структур ZnSe/ZnMgSSe // Вестник Рязанской государственной радиотехнической академии. 2005. Вып. 16. С. 79-84.

8. Шарма Б.Л., Пурохит Р.К. Полупроводниковые гетеропереходы / пер. с англ. под ред. Ю.В. Гуляева. М.: Сов. радио, 1979. 232 с.

9. Денисов А.А., Лактюшкин В.Н., Садофьев Ю.Г. // Обзоры по электронной технике. 1985. Сер. 7. Вып. 15(1141). 52 с.

10. Зи С.М. Физика полупроводниковых приборов / пер. с англ. под ред. А.Ф. Трутко. М.: Энергия, 1973. 656 с.

11. Бабичев А.П., Бабушкина Н.А., Братковский А.М. и др. Физические величины: справочник / под ред. И.С. Григорьева, Е.С. Мейлихова. М.: Энергоатомиздат, 1991. 1232 с.

12. Берман Л.С., Лебедев А.А. Емкостная спектроскопия глубоких центров в полупроводниках. Л.: Наука, 1981. 176 с.

13. Лабутин А.В., Литвинов В.Г. Программа моделирования релаксационной спектроскопии глубоких уровней на ЭВМ. №2004610118. Реестр программ для ЭВМ. Москва. 2004. 74 с.

14. Litvinov V.G., Kozlovsky V.I., Sadofyev Yu.G. Deep-level transient spectroscopy and cathode-luminescence of the CdSe/ZnSe QD structures grown on GaAs(100) by MBE // Phys. Stat. Sol. (b). 2002. V. 229. No.1. P. 513-517.

15. Козловский В.И., Кузнецов П.И., Литвинов В.Г., Якущева Г.Г. Разрывы зон в периодических гетероструктурах ZnSSe/ZnMgSSe // Тез. докл. II всероссийской конф. "Физико-химические процессы в конденсированном состоянии и на межфазных границах". Воронеж, 11-15 октября, 2004. С. 266-268.

16. Брунков П.Н., Суворова А.А., Берт А.Р. и др. Физика и техника полупроводников. 1998. №10. С.1229-1234.

17. Lang D.V. Deep level transient spectroscopy: a

new method to characterize traps in semiconductors // J. Appl. Phys. 1974. V. 45. P. 3023-3032.

18. В.И. Козловский, Ю.Г. Садофьев, В.Г. Литвинов. Известия АН. Серия физическая, 2001, Т.65, №2, С.298-301.

19. *Landolt-Börnstein*, Numerical data and relationships in science and technology Vol. 41B (Springer, Berlin, 1999).